Global Unsupervised Anomaly Extraction and Discrimination in Hyperspectral Images via Maximum Orthogonal-Complements Analysis
نویسندگان
چکیده
In this paper we address the problem of global unsupervised detection, discrimination, and population estimation of anomalies of the same type, in hyperspectral images. The proposed approach, denoted as Anomaly Extraction and Discrimination Algorithm (AXDA), detects anomalies via analysis of a signalsubspace obtained by the recently developed Maximum Orthogonal Complement Algorithm (MOCA). MOCA is unique in providing an unsupervised combined estimation of signal-subspace that includes anomalies, and its rank. The main idea of AXDA is to iteratively reduce the anomaly vector subspacerank, making the related anomalies to be poorly represented. This helps to detect them by a statistical analysis of the 2,∞-norm of data residuals. As a by-product, AXDA provides also an anomaly-free robust background subspace and rank estimation. We experimentally show that AXDA performs better than other global anomaly detection techniques, such as the Gaussian Mixture Model-based (GMRX) algorithm and the classical Matched Subspace Detector (MSD), in most of the range of the tested parameters. Since MSD requires prior knowledge of anomaly and background subspaces, which are unknown, the MSD was applied to the anomaly subspace obtained from MOCA and the anomaly-free background subspace obtained from AXDA.
منابع مشابه
Global Unsupervised Anomaly Extraction and Discrimination in Hypersprectral Images via Maximum Orthogonal-Complements Analysis
In this paper we address the problem of global unsupervised detection, discrimination, and population estimation of anomalies of the same type, in hyperspectral images. The proposed approach, denoted as Anomaly Extraction and Discrimination Algorithm (AXDA), detects anomalies via analysis of a signalsubspace obtained by the recently developed Maximum Orthogonal Complement Algorithm (MOCA). MOCA...
متن کاملIRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Global Unsupervised Anomaly Extraction and Discrimination in Hypersprectral Images via Maximum Orthogonal-Complements Analysis
In this paper we address the problem of global unsupervised detection, discrimination, and population estimation of anomalies of the same type, in hyperspectral images. The proposed approach, denoted as Anomaly Extraction and Discrimination Algorithm (AXDA), detects anomalies via analysis of a signalsubspace obtained by the recently developed Maximum Orthogonal Complement Algorithm (MOCA). MOCA...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کامل